Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Cell Sci ; 136(10)2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-37248991

RESUMEN

Genomic replication is a critical, regulated process that ensures accurate genetic information duplication. In eukaryotic cells, strategies have evolved to prevent conflicts between replication and transcription. Giardia lamblia, a binucleated protozoan, alternates between tetraploid and octaploid genomes during its cell cycle. Using single-molecule techniques like DNA combing and nanopore-based sequencing, we investigated the spatio-temporal organization of DNA replication, replication fork progression and potential head-on replication-transcription collisions in Giardia trophozoites. Our findings indicate that Giardia chromosomes are replicated from only a few active origins, which are widely spaced and exhibit faster replication rates compared to those in other protozoan parasites. Immunofluorescence assays revealed that ∼20% of trophozoites show asynchronous replication between nuclei. Forksense and gene ontology analyses disclosed that genes in regions with potential head-on collisions are linked to chromatin dynamics, cell cycle regulation and DNA replication/repair pathways, possibly explaining the observed asynchronous replication in part of the population. This study offers the first comprehensive view of replication dynamics in Giardia, which is the pathogen that causes giardiasis, a diarrheal disease impacting millions worldwide.


Asunto(s)
Giardia lamblia , Giardiasis , Humanos , Giardia lamblia/genética , Giardiasis/parasitología , Ciclo Celular/genética , Núcleo Celular , Replicación del ADN/genética
2.
Insect Biochem Mol Biol ; 103: 46-52, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30401626

RESUMEN

Rhodnius prolixus is one of the most important vectors of Chagas disease in Central and South America for which repellents and attractants are sorely needed. Repellents like DEET, picaridin, and IR3535 are widely used as the first line of defense against mosquitoes and other vectors, but they are ineffective against R. prolixus. Our initial goal was to identify in R. prolixus genome odorant receptors sensitive to putative sex pheromones. We compared gene expression of 21 ORs in the R. prolixus genome, identified 4 ORs enriched in male (compared with female) antennae. Attempts to de-orphanize these ORs using the Xenopus oocyte recording system showed that none of them responded to putative sex pheromone constituents. One of the them, RproOR80, was sensitive to 4 compounds in our panel of 109 odorants, namely, 2-heptanone, γ-octalactone, acetophenone, and 4-methylcychohexanol. Interestingly, these compounds, particularly 4-methylcyclohexanol, showed strong repellency activity as indicated not only by a significant decrease in residence time close to a host, but also by a remarkable reduction in blood intake. 4-Methylcyclohexanol-elicited repellency activity was abolished in RNAi-treated insects. In summary, our search for pheromone receptors led to the discovery of repellents for R. prolixus.


Asunto(s)
Antenas de Artrópodos/efectos de los fármacos , Ciclohexanoles/farmacología , Rhodnius/efectos de los fármacos , Acetofenonas/farmacología , Animales , Enfermedad de Chagas/prevención & control , Femenino , Repelentes de Insectos/farmacología , Insectos Vectores/efectos de los fármacos , Cetonas/farmacología , Lactonas/farmacología , Masculino , Receptores Odorantes/metabolismo
3.
Front Physiol ; 9: 1175, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30210359

RESUMEN

Olfactory proteins mediate a wide range of essential behaviors for insect survival. Odorant binding proteins (OBPs) are small soluble olfactory proteins involved in the transport of odor molecules (=odorants) through the sensillum lymph to odorant receptors, which are housed on the dendritic membrane of olfactory sensory neurons also known as olfactory receptor neurons. Thus, a better understanding of the role(s) of OBPs from Rhodnius prolixus, one of the main vectors of Chagas disease, may ultimately lead to new strategies for vector management. Here we aimed at functionally characterize OBPs from R. prolixus. Genes of interest were selected using conventional bioinformatics approaches and subsequent quantification by qPCR. We screened and estimated expression in different tissues of 17 OBPs from R. prolixus adults. These analyses showed that 11 OBPs were expressed in all tissues, whereas six OBP genes were specific to antennae. Two OBP genes, RproOBP6 and RproOBP13, were expressed in both male and female antennae thus suggesting that they might be involved in the recognition of semiochemicals mediating behaviors common to both sexes, such host finding (for a blood meal). Transcripts for RproOBP17 and RproOBP21 were enriched in female antennae and possibly involved in the detection of oviposition attractants or other semiochemicals mediating female-specific behaviors. By contrast, RproOBP26 and RproOBP27 might be involved in the reception of sex pheromones given that their transcripts were highly expressed in male antennae. To test this hypothesis, we silenced RproOBP27 using RNAi and examined the sexual behavior of the phenotype. Indeed, adult males treated with dsOBP27 spent significantly less time close to females as compared to controls. Additionally, docking analysis suggested that RproOBP27 binds to putative sex pheromones. We therefore concluded that RproOBP27 might be a pheromone-binding protein.

4.
Insect Biochem Mol Biol ; 69: 82-90, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25747010

RESUMEN

Olfaction is one of the main sensory modalities that allow insects to interpret their environment. Several proteins, including odorant-binding proteins (OBPs) and odorant receptors (ORs), are involved in this process. Odorant receptors are ion channels formed by a binding unit OR and an odorant receptor co-receptor (Orco). The main goal of this study was to characterize the Orco gene of Rhodnius prolixus (RproOrco) and to infer its biological functions using gene silencing. The full-length RproOrco gene sequence was downloaded from VectorBase. This gene has 7 introns and is located in the genome SuperContig GL563069: 1,017,713-1,023,165. RproOrco encodes a protein of 473 amino acids, with predicted 7 transmembrane domains, and is highly expressed in the antennae during all R. prolixus developmental stages. The RNAi technique effectively silenced RproOrco, reducing the gene's expression by approximately 73%. Interestingly, the effect of gene silencing persisted for more than 100 days, indicating a prolonged effect of dsRNA that was maintained even after molting. The phenotypic effects of silencing involved the following: (1) loss of the ability to find a vertebrate host in a timely manner, (2) decreased ingested blood volume, (3) delayed and decreased molt rate, (4) increased mortality rate, and (5) decreased egg laying. Our data strongly suggest that dsOrco disrupts R. prolixus host-finding behavior, which is further reflected in the blood ingestion, molting, mortality, and egg laying data. This study clearly demonstrates that Orco is an excellent target for controlling triatomine populations. Thus, the data presented here open new possibilities for the control of vector-borne diseases.


Asunto(s)
Genes de Insecto , Proteínas de Insectos/genética , Receptores Odorantes/genética , Rhodnius/fisiología , Animales , Antenas de Artrópodos/fisiología , Enfermedad de Chagas/transmisión , Conducta Alimentaria , Femenino , Silenciador del Gen , Insectos Vectores , Masculino , Muda/fisiología , Oviposición/fisiología , Filogenia , Interferencia de ARN , ARN Bicatenario , Conejos , Rhodnius/genética , Rhodnius/crecimiento & desarrollo
5.
Insect Biochem Mol Biol ; 51: 110-21, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24398146

RESUMEN

In this study, we provided the demonstration of the presence of a single CHS gene in the Rhodnius prolixus (a blood-sucking insect) genome that is expressed in adults (integument and ovary) and in the integument of nymphs during development. This CHS gene appears to be essential for epidermal integrity and egg formation in R. prolixus. Because injection of CHS dsRNA was effective in reducing CHS transcript levels, phenotypic alterations in the normal course of ecdysis occurred. In addition, two phenotypes with severe cuticle deformations were observed, which were associated with loss of mobility and lifetime. The CHS dsRNA treatment in adult females affected oogenesis, reducing the size of the ovary and presenting a greater number of atresic oocytes and a smaller number of chorionated oocytes compared with the control. The overall effect was reduced oviposition. The injection of CHS dsRNA modified the natural course of egg development, producing deformed eggs that were dark in color and unable to hatch, distinct from the viable eggs laid by control females. The ovaries, which were examined under fluorescence microscopy using a probe for chitin detection, showed a reduced deposition on pre-vitellogenic and vitellogenic oocytes compared with control. Taken together, these data suggest that the CHS gene is fundamentally important for ecdysis, oogenesis and egg hatching in R. prolixus and also demonstrated that the CHS gene is a good target for controlling Chagas disease vectors.


Asunto(s)
Quitina Sintasa/genética , Muda/genética , Oogénesis/genética , Oviposición/genética , Rhodnius/genética , Rhodnius/metabolismo , Animales , Enfermedad de Chagas , Vectores de Enfermedades , Femenino , Muda/fisiología , Oogénesis/fisiología , Oviposición/fisiología , Interferencia de ARN , ARN Bicatenario
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...